

Sirindhorn International Institute of Technology
 Thammasat University

ECS315 2019/1 Part VI Dr.Prapun

12 Limiting Theorems

12.1 Law of Large Numbers (LLN)

Definition 12.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a collection of random variables with a common mean $\mathbb{E}\left[X_{i}\right]=m$ for all i. In practice, since we do not know m, we use the numerical average, or sample mean,

$$
M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

in place of the true, but unknown value, m.
Q: Can this procedure of using M_{n} as an estimate of m be justified in some sense?

A: This can be done via the law of large number.
12.2. The law of large number basically says that if you have a sequence of i.i.d random variables X_{1}, X_{2}, \ldots. Then the sample means $M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ will converge to the actual mean as $n \rightarrow$ ∞.
12.3. LLN is easy to see via the property of variance. Note that

$$
\mathbb{E}\left[M_{n}\right]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} X_{i}=m
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[M_{n}\right]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var} X_{i}=\frac{1}{n} \sigma^{2}, \tag{36}
\end{equation*}
$$

Remarks:
(a) For (36) to hold, it is sufficient to have uncorrelated X_{i} 's.
(b) From (36), we also have

$$
\begin{equation*}
\sigma_{M_{n}}=\frac{1}{\sqrt{n}} \sigma . \tag{37}
\end{equation*}
$$

In words, "when uncorrelated (or independent) random variables each having the same distribution are averaged together, the standard deviation is reduced according to the square root law." [21, p 142].

Exercise 12.4 (F2011). Consider i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{10}$. Define the sample mean M by

$$
M=\frac{1}{10} \sum_{k=1}^{10} X_{k} .
$$

Let

$$
V_{1}=\frac{1}{10} \sum_{k=1}^{10}\left(X_{k}-\mathbb{E}\left[X_{k}\right]\right)^{2} .
$$

and

$$
V_{2}=\frac{1}{10} \sum_{j=1}^{10}\left(X_{j}-M\right)^{2}
$$

Suppose $\mathbb{E}\left[X_{k}\right]=1$ and $\operatorname{Var}\left[X_{k}\right]=2$.
(a) Find $\mathbb{E}[M]$.
(b) Find $\operatorname{Var}[M]$.
(c) Find $\mathbb{E}\left[V_{1}\right]$.
$\left(d^{*}\right)$ Find $\mathbb{E}\left[V_{2}\right]$.
12.5. In 1.21 and 1.23, we stated an application of LLN. Back then, we have a sequence of independent repeated trials of an experiment.

Let A be the event of interest. Let a Bernoulli RV X_{k} indicate whether the event A happens in the k th trial. Then, the X_{k} are i.i.d. with

$$
\mathbb{E} X_{k}=1 \times P(A)+0 \times(1-P(A))=P(A) .
$$

Note also that $\sum_{k=1}^{n} X_{k}$ is the same as $N(A, n)$ defined in Definition 1.22. Both of them count the number of trials in which A occurs. Therefore, the sample mean

$$
M_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}=\frac{N(A, n)}{n}
$$

is the same as the relative frequency of event A.
By LLN, we can now conclude that M_{n} will converge to $\mathbb{E} X_{k}=$ $P(A)$ as $n \rightarrow \infty$. The same result was stated without proof in 1.23.

Example 12.6. Back to Example 1.19 .

12.2 Central Limit Theorem (CLT)

In practice, there are many random variables that arise as a sum of many other random variables. In this section, we consider the sum

$$
\begin{equation*}
S_{n}=\sum_{i=1}^{n} X_{i} \tag{38}
\end{equation*}
$$

where the X_{i} are i.i.d. with common mean m and common variance σ^{2}.

- Note that when we talk about X_{i} being i.i.d., the definition is that they are independent and identically distributed. It is then convenient to talk about a random variable X which shares the same distribution (pdf/pmf) with these X_{i}. This allow us to write

$$
\begin{equation*}
X_{i} \stackrel{\text { i.i.d. }}{\sim} X, \tag{39}
\end{equation*}
$$

which is much more compact than saying that the X_{i} are i.i.d. with the same distribution (pdf/pmf) as X. Moreover, we can also use $\mathbb{E} X$ and σ_{X}^{2} for the common expected value and variance of the X_{i}.

Q: How does S_{n} behave?

In the previous section, we consider the sample mean of identically distributed random variables. More specifically, we consider the random variable $M_{n}=\frac{1}{n} S_{n}$. We found that M_{n} will converge to m as n increases to ∞. Here, we don't want to rescale the sum S_{n} by the factor $\frac{1}{n}$.
12.7 (Approximation of densities and pmfs using the CLT). The actual statement of the CLT is a bit difficult to state. So, we first give you the interpretation/insight from CLT which is very easy to remember and use:

For n large enough, we can approximate S_{n} by a Gaussian random variable with the same mean and variance as S_{n}.

Figure 42: Gaussian approximation of the sum of i.i.d. Bernoulli random variables. The stem plots show the pmf of the sum $S_{n}=\sum_{k=1}^{n} X_{k}$ where X_{1}, X_{2}, \ldots are i.i.d. Bernoulli(0.3) random variables.

Figure 43: Gaussian approximation of the sum of i.i.d. discrete random variables. The stem plots show the pmf of the sum $S_{n}=\sum_{k=1}^{n} X_{k}$.

Note that the mean and variance of S_{n} is $n m$ and $n \sigma^{2}$, respectively. Hence, for n large enough we can approximate S_{n} by $\mathcal{N}\left(n m, n \sigma^{2}\right)$. In particular,
(a) $F_{S_{n}}(s) \approx \Phi\left(\frac{s-n m}{\sigma \sqrt{n}}\right)$.
(b) If the X_{i} are continuous random variable, then

$$
f_{S_{n}}(s) \approx \frac{1}{\sqrt{2 \pi} \sigma \sqrt{n}} e^{-\frac{1}{2}\left(\frac{s-n m}{\sigma \sqrt{n}}\right)^{2}} .
$$

(c) If the X_{i} are integer-valued, then

$$
P\left[S_{n}=k\right]=P\left[k-\frac{1}{2}<S_{n} \leq k+\frac{1}{2}\right] \approx \frac{1}{\sqrt{2 \pi} \sigma \sqrt{n}} e^{-\frac{1}{2}\left(\frac{k-n m}{\sigma \sqrt{n}}\right)^{2}} .
$$

[9, eq (5.14), p. 213].
The approximation is best for k near $n m$ [9, p. 211].
Example 12.8. Approximation for Binomial Distribution: For $X \sim \mathcal{B}(n, p)$, when n is large, binomial distribution becomes difficult to compute directly because of the need to calculate factorial terms.
(a) When p is not close to either 0 or 1 so that the variance is also large, we can use CLT to approxmiate

$$
\begin{align*}
P[X=k] & \approx \frac{1}{\sqrt{2 \pi \operatorname{Var} X}} e^{-\frac{(k-\mathbb{E} X)^{2}}{2 \operatorname{Var} X}} \tag{40}\\
& =\frac{1}{\sqrt{2 \pi n p(1-p)}} e^{-\frac{(k-n p)^{2}}{2 n p(1-p)}} . \tag{41}
\end{align*}
$$

This is called Laplace approximation to the Binomial distribution [25, p. 282].
(b) When p is small, the binomial distribution can be approximated by $\mathcal{P}(n p)$ as discussed in 8.56 .
(c) If p is very close to 1 , then $n-X$ will behave approximately Poisson.

Figure 44: Gaussian approximation to Binomial, Poisson distribution, and Gamma distribution.

Exercise 12.9 (F2011). Continue from Exercise 6.59. The stronger person (Kakashi) should win the competition if n is very large. (By the law of large numbers, the proportion of fights that Kakashi wins should be close to 55%.) However, because the results are random and n cannot be very large, we cannot guarantee that Kakashi will win. However, it may be good enough if the probability that Kakashi wins the competition is greater than 0.85 .

We want to find the minimal value of n such that the probability that Kakashi wins the competition is greater than 0.85 .

Let N be the number of fights that Kakashi wins among the n fights. Then, we need

$$
\begin{equation*}
P\left[N>\frac{n}{2}\right] \geq 0.85 \tag{42}
\end{equation*}
$$

Use the central limit theorem and Table 3.1 or Table 3.2 from [Yates and Goodman] to approximate the minimal value of n such that (42) is satisfied.

